3.6.2 \(\int \frac {x^4 (a+b \text {arccosh}(c x))}{(d+e x^2)^2} \, dx\) [502]

3.6.2.1 Optimal result
3.6.2.2 Mathematica [C] (warning: unable to verify)
3.6.2.3 Rubi [A] (verified)
3.6.2.4 Maple [C] (warning: unable to verify)
3.6.2.5 Fricas [F]
3.6.2.6 Sympy [F]
3.6.2.7 Maxima [F(-2)]
3.6.2.8 Giac [F]
3.6.2.9 Mupad [F(-1)]

3.6.2.1 Optimal result

Integrand size = 21, antiderivative size = 839 \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\frac {a x}{e^2}-\frac {b \sqrt {-1+c x} \sqrt {1+c x}}{c e^2}+\frac {b x \text {arccosh}(c x)}{e^2}-\frac {d (a+b \text {arccosh}(c x))}{4 e^{5/2} \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {d (a+b \text {arccosh}(c x))}{4 e^{5/2} \left (\sqrt {-d}+\sqrt {e} x\right )}+\frac {b c d \text {arctanh}\left (\frac {\sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {1+c x}}{\sqrt {c \sqrt {-d}+\sqrt {e}} \sqrt {-1+c x}}\right )}{2 \sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {c \sqrt {-d}+\sqrt {e}} e^{5/2}}-\frac {b c d \text {arctanh}\left (\frac {\sqrt {c \sqrt {-d}+\sqrt {e}} \sqrt {1+c x}}{\sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {-1+c x}}\right )}{2 \sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {c \sqrt {-d}+\sqrt {e}} e^{5/2}}+\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}+\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}-\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}+\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}-\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}}+\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{4 e^{5/2}} \]

output
a*x/e^2+b*x*arccosh(c*x)/e^2+3/4*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2 
)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/ 
2)-3/4*(a+b*arccosh(c*x))*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/( 
c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/2)+3/4*(a+b*arccosh(c*x))* 
ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1 
/2)))*(-d)^(1/2)/e^(5/2)-3/4*(a+b*arccosh(c*x))*ln(1+(c*x+(c*x-1)^(1/2)*(c 
*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/2)-3 
/4*b*polylog(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(- 
c^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/2)+3/4*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c* 
x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/2)-3/ 
4*b*polylog(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c 
^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/2)+3/4*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c*x 
+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))*(-d)^(1/2)/e^(5/2)-1/4 
*d*(a+b*arccosh(c*x))/e^(5/2)/((-d)^(1/2)-x*e^(1/2))+1/4*d*(a+b*arccosh(c* 
x))/e^(5/2)/((-d)^(1/2)+x*e^(1/2))-b*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/e^2+1/2 
*b*c*d*arctanh((c*x+1)^(1/2)*(c*(-d)^(1/2)-e^(1/2))^(1/2)/(c*x-1)^(1/2)/(c 
*(-d)^(1/2)+e^(1/2))^(1/2))/e^(5/2)/(c*(-d)^(1/2)-e^(1/2))^(1/2)/(c*(-d)^( 
1/2)+e^(1/2))^(1/2)-1/2*b*c*d*arctanh((c*x+1)^(1/2)*(c*(-d)^(1/2)+e^(1/2)) 
^(1/2)/(c*x-1)^(1/2)/(c*(-d)^(1/2)-e^(1/2))^(1/2))/e^(5/2)/(c*(-d)^(1/2)-e 
^(1/2))^(1/2)/(c*(-d)^(1/2)+e^(1/2))^(1/2)
 
3.6.2.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.32 (sec) , antiderivative size = 777, normalized size of antiderivative = 0.93 \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\frac {8 a \sqrt {e} x+\frac {4 a d \sqrt {e} x}{d+e x^2}-12 a \sqrt {d} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )+b \left (\frac {8 \sqrt {e} \left (-\sqrt {\frac {-1+c x}{1+c x}} (1+c x)+c x \text {arccosh}(c x)\right )}{c}+2 d \left (\frac {\text {arccosh}(c x)}{-i \sqrt {d}+\sqrt {e} x}+\frac {c \log \left (\frac {2 e \left (i \sqrt {e}+c^2 \sqrt {d} x-i \sqrt {-c^2 d-e} \sqrt {-1+c x} \sqrt {1+c x}\right )}{c \sqrt {-c^2 d-e} \left (\sqrt {d}+i \sqrt {e} x\right )}\right )}{\sqrt {-c^2 d-e}}\right )+2 d \left (\frac {\text {arccosh}(c x)}{i \sqrt {d}+\sqrt {e} x}+\frac {c \log \left (\frac {2 e \left (-\sqrt {e}-i c^2 \sqrt {d} x+\sqrt {-c^2 d-e} \sqrt {-1+c x} \sqrt {1+c x}\right )}{c \sqrt {-c^2 d-e} \left (i \sqrt {d}+\sqrt {e} x\right )}\right )}{\sqrt {-c^2 d-e}}\right )-3 i \sqrt {d} \left (\text {arccosh}(c x) \left (-\text {arccosh}(c x)+2 \left (\log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{i c \sqrt {d}-\sqrt {-c^2 d-e}}\right )+\log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{i c \sqrt {d}+\sqrt {-c^2 d-e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-i c \sqrt {d}+\sqrt {-c^2 d-e}}\right )+2 \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{i c \sqrt {d}+\sqrt {-c^2 d-e}}\right )\right )+3 i \sqrt {d} \left (\text {arccosh}(c x) \left (-\text {arccosh}(c x)+2 \left (\log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-i c \sqrt {d}+\sqrt {-c^2 d-e}}\right )+\log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{i c \sqrt {d}+\sqrt {-c^2 d-e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{i c \sqrt {d}-\sqrt {-c^2 d-e}}\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{i c \sqrt {d}+\sqrt {-c^2 d-e}}\right )\right )\right )}{8 e^{5/2}} \]

input
Integrate[(x^4*(a + b*ArcCosh[c*x]))/(d + e*x^2)^2,x]
 
output
(8*a*Sqrt[e]*x + (4*a*d*Sqrt[e]*x)/(d + e*x^2) - 12*a*Sqrt[d]*ArcTan[(Sqrt 
[e]*x)/Sqrt[d]] + b*((8*Sqrt[e]*(-(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)) + 
 c*x*ArcCosh[c*x]))/c + 2*d*(ArcCosh[c*x]/((-I)*Sqrt[d] + Sqrt[e]*x) + (c* 
Log[(2*e*(I*Sqrt[e] + c^2*Sqrt[d]*x - I*Sqrt[-(c^2*d) - e]*Sqrt[-1 + c*x]* 
Sqrt[1 + c*x]))/(c*Sqrt[-(c^2*d) - e]*(Sqrt[d] + I*Sqrt[e]*x))])/Sqrt[-(c^ 
2*d) - e]) + 2*d*(ArcCosh[c*x]/(I*Sqrt[d] + Sqrt[e]*x) + (c*Log[(2*e*(-Sqr 
t[e] - I*c^2*Sqrt[d]*x + Sqrt[-(c^2*d) - e]*Sqrt[-1 + c*x]*Sqrt[1 + c*x])) 
/(c*Sqrt[-(c^2*d) - e]*(I*Sqrt[d] + Sqrt[e]*x))])/Sqrt[-(c^2*d) - e]) - (3 
*I)*Sqrt[d]*(ArcCosh[c*x]*(-ArcCosh[c*x] + 2*(Log[1 + (Sqrt[e]*E^ArcCosh[c 
*x])/(I*c*Sqrt[d] - Sqrt[-(c^2*d) - e])] + Log[1 + (Sqrt[e]*E^ArcCosh[c*x] 
)/(I*c*Sqrt[d] + Sqrt[-(c^2*d) - e])])) + 2*PolyLog[2, (Sqrt[e]*E^ArcCosh[ 
c*x])/((-I)*c*Sqrt[d] + Sqrt[-(c^2*d) - e])] + 2*PolyLog[2, -((Sqrt[e]*E^A 
rcCosh[c*x])/(I*c*Sqrt[d] + Sqrt[-(c^2*d) - e]))]) + (3*I)*Sqrt[d]*(ArcCos 
h[c*x]*(-ArcCosh[c*x] + 2*(Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/((-I)*c*Sqrt[d 
] + Sqrt[-(c^2*d) - e])] + Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(I*c*Sqrt[d] + 
 Sqrt[-(c^2*d) - e])])) + 2*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(I*c*Sqrt[ 
d] - Sqrt[-(c^2*d) - e])] + 2*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(I*c*Sqr 
t[d] + Sqrt[-(c^2*d) - e])])))/(8*e^(5/2))
 
3.6.2.3 Rubi [A] (verified)

Time = 2.63 (sec) , antiderivative size = 839, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6374

\(\displaystyle \int \left (\frac {d^2 (a+b \text {arccosh}(c x))}{e^2 \left (d+e x^2\right )^2}-\frac {2 d (a+b \text {arccosh}(c x))}{e^2 \left (d+e x^2\right )}+\frac {a+b \text {arccosh}(c x)}{e^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x \text {arccosh}(c x) b}{e^2}+\frac {c d \text {arctanh}\left (\frac {\sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {c x+1}}{\sqrt {\sqrt {-d} c+\sqrt {e}} \sqrt {c x-1}}\right ) b}{2 \sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {\sqrt {-d} c+\sqrt {e}} e^{5/2}}-\frac {c d \text {arctanh}\left (\frac {\sqrt {\sqrt {-d} c+\sqrt {e}} \sqrt {c x+1}}{\sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {c x-1}}\right ) b}{2 \sqrt {c \sqrt {-d}-\sqrt {e}} \sqrt {\sqrt {-d} c+\sqrt {e}} e^{5/2}}-\frac {3 \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right ) b}{4 e^{5/2}}+\frac {3 \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right ) b}{4 e^{5/2}}-\frac {3 \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right ) b}{4 e^{5/2}}+\frac {3 \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right ) b}{4 e^{5/2}}-\frac {\sqrt {c x-1} \sqrt {c x+1} b}{c e^2}+\frac {a x}{e^2}-\frac {d (a+b \text {arccosh}(c x))}{4 e^{5/2} \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {d (a+b \text {arccosh}(c x))}{4 e^{5/2} \left (\sqrt {e} x+\sqrt {-d}\right )}+\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (\frac {e^{\text {arccosh}(c x)} \sqrt {e}}{c \sqrt {-d}-\sqrt {-d c^2-e}}+1\right )}{4 e^{5/2}}+\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} (a+b \text {arccosh}(c x)) \log \left (\frac {e^{\text {arccosh}(c x)} \sqrt {e}}{\sqrt {-d} c+\sqrt {-d c^2-e}}+1\right )}{4 e^{5/2}}\)

input
Int[(x^4*(a + b*ArcCosh[c*x]))/(d + e*x^2)^2,x]
 
output
(a*x)/e^2 - (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*e^2) + (b*x*ArcCosh[c*x])/ 
e^2 - (d*(a + b*ArcCosh[c*x]))/(4*e^(5/2)*(Sqrt[-d] - Sqrt[e]*x)) + (d*(a 
+ b*ArcCosh[c*x]))/(4*e^(5/2)*(Sqrt[-d] + Sqrt[e]*x)) + (b*c*d*ArcTanh[(Sq 
rt[c*Sqrt[-d] - Sqrt[e]]*Sqrt[1 + c*x])/(Sqrt[c*Sqrt[-d] + Sqrt[e]]*Sqrt[- 
1 + c*x])])/(2*Sqrt[c*Sqrt[-d] - Sqrt[e]]*Sqrt[c*Sqrt[-d] + Sqrt[e]]*e^(5/ 
2)) - (b*c*d*ArcTanh[(Sqrt[c*Sqrt[-d] + Sqrt[e]]*Sqrt[1 + c*x])/(Sqrt[c*Sq 
rt[-d] - Sqrt[e]]*Sqrt[-1 + c*x])])/(2*Sqrt[c*Sqrt[-d] - Sqrt[e]]*Sqrt[c*S 
qrt[-d] + Sqrt[e]]*e^(5/2)) + (3*Sqrt[-d]*(a + b*ArcCosh[c*x])*Log[1 - (Sq 
rt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(4*e^(5/2)) - (3 
*Sqrt[-d]*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d 
] - Sqrt[-(c^2*d) - e])])/(4*e^(5/2)) + (3*Sqrt[-d]*(a + b*ArcCosh[c*x])*L 
og[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(4*e^( 
5/2)) - (3*Sqrt[-d]*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/ 
(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(4*e^(5/2)) - (3*b*Sqrt[-d]*PolyLog[2, 
 -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]))])/(4*e^(5/2 
)) + (3*b*Sqrt[-d]*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[ 
-(c^2*d) - e])])/(4*e^(5/2)) - (3*b*Sqrt[-d]*PolyLog[2, -((Sqrt[e]*E^ArcCo 
sh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))])/(4*e^(5/2)) + (3*b*Sqrt[-d]* 
PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(4 
*e^(5/2))
 

3.6.2.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
3.6.2.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 31.12 (sec) , antiderivative size = 897, normalized size of antiderivative = 1.07

method result size
parts \(\text {Expression too large to display}\) \(897\)
derivativedivides \(\text {Expression too large to display}\) \(913\)
default \(\text {Expression too large to display}\) \(913\)

input
int(x^4*(a+b*arccosh(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
a*(1/e^2*x-1/e^2*d*(-1/2*x/(e*x^2+d)+3/2/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2 
))))+b/c^5*(1/2*c^4*(-1+arccosh(c*x))/e^2*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2) 
)+1/2*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x)*c^4*(1+arccosh(c*x))/e^2+1/2*d*ar 
ccosh(c*x)*c^7*x/e^2/(c^2*e*x^2+c^2*d)+1/2*(-(2*c^2*d-2*(d*c^2*(c^2*d+e))^ 
(1/2)+e)*e)^(1/2)*(2*(d*c^2*(c^2*d+e))^(1/2)*c^2*d+2*c^4*d^2+2*c^2*d*e+(d* 
c^2*(c^2*d+e))^(1/2)*e)*d*c^6*arctanh(e*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/ 
((-2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)-e)*e)^(1/2))/e^5/(c^2*d+e)-1/2*(-(2*c 
^2*d-2*(d*c^2*(c^2*d+e))^(1/2)+e)*e)^(1/2)*(2*c^2*d+2*(d*c^2*(c^2*d+e))^(1 
/2)+e)*arctanh(e*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/((-2*c^2*d+2*(d*c^2*(c^ 
2*d+e))^(1/2)-e)*e)^(1/2))*d*c^6/e^5+1/2*((2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/ 
2)+e)*e)^(1/2)*(-2*(d*c^2*(c^2*d+e))^(1/2)*c^2*d+2*c^4*d^2+2*c^2*d*e-(d*c^ 
2*(c^2*d+e))^(1/2)*e)*d*c^6*arctan(e*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/((2 
*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)+e)*e)^(1/2))/e^5/(c^2*d+e)-1/2*((2*c^2*d+ 
2*(d*c^2*(c^2*d+e))^(1/2)+e)*e)^(1/2)*(2*c^2*d-2*(d*c^2*(c^2*d+e))^(1/2)+e 
)*arctan(e*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/((2*c^2*d+2*(d*c^2*(c^2*d+e)) 
^(1/2)+e)*e)^(1/2))*d*c^6/e^5+3/4*d/e^2*c^6*sum(1/_R1/(_R1^2*e+2*c^2*d+e)* 
(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)+dilog((_R1-c*x 
-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e 
))-3/4*d/e^2*c^6*sum(_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c* 
x-1)^(1/2)*(c*x+1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/...
 
3.6.2.5 Fricas [F]

\[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{4}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^4*(a+b*arccosh(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^4*arccosh(c*x) + a*x^4)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.6.2.6 Sympy [F]

\[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^{4} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate(x**4*(a+b*acosh(c*x))/(e*x**2+d)**2,x)
 
output
Integral(x**4*(a + b*acosh(c*x))/(d + e*x**2)**2, x)
 
3.6.2.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^4*(a+b*arccosh(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.6.2.8 Giac [F]

\[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{4}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^4*(a+b*arccosh(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arccosh(c*x) + a)*x^4/(e*x^2 + d)^2, x)
 
3.6.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^4\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^4*(a + b*acosh(c*x)))/(d + e*x^2)^2,x)
 
output
int((x^4*(a + b*acosh(c*x)))/(d + e*x^2)^2, x)